Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Parasitol Parasites Wildl ; 19: 211-221, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36339899

RESUMEN

With the opening of the Suez Canal as a link between the Red Sea and the Mediterranean Sea in 1869, the biogeographical event of the Lessepsian migration has been starting. Aided by beneficial conditions in the new habitat, almost 500 marine species have immigrated and often established themselves in the Mediterranean Sea, including several pufferfish species, with all of them extending their range and becoming important components of the local fauna. The parasitic fauna of these pufferfish has scarcely been examined in the Mediterranean Sea or in their native range, which provides the opportunity to study host-parasite interaction in a new habitat. The present study describes the parasitic fauna in four alien invasive pufferfish species (Lagocephalus guentheri, L. sceleratus, L. suezensis, and Torquigener flavimaculosus) of various sizes and ages on the Israeli Mediterranean coast. The parasite fauna of these species was diverse (Maculifer dayawanensis Digenea; Calliterarhynchus gracilis, Nybelinia africana and Tetraphyllidea larvae Cestoda; Hysterothylacium reliquens, Hysterothylacium sp. and Raphidascaris sp. Nematoda; Trachellobdella lubrica Hirudinea and Caligus fugu and Taeniacanthus lagocephali Copepoda) and consisted of mostly generalist species, most likely acquired in the new habitat, and specialist copepod ectoparasites, having co-invaded with the pufferfish. Additionally, the oioxenic opecoelid digenean Maculifer dayawanensis was found in two pufferfish species. The genus was previously only known from the Indo-Pacific Ocean, representing the eighth reported case of a Lessepsian endoparasite so far. Our results suggest a change in parasite fauna to native Mediterranean species in the pufferfish like previously reported in other Lessepsian migrant predatory fish species and a wider spread of co-invasion of fish endoparasites to the Mediterranean Sea than previously assumed. The study also provides several new host records and the first report for parasites in T. flavimaculosus.

2.
PLoS One ; 15(2): e0229709, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32109253

RESUMEN

Experience can lead to faster exploitation of food patches through spatial learning or other parallel processes. Past studies have indicated that hungry animals either search more intensively for food or learn better how to detect it. However, fewer studies have examined the contribution of non-spatial information on the presence of food nearby to maze solving, as a parallel process to spatial learning. We exposed Cataglyphis niger ant workers to a food reward and then let them search for food in a maze. The information that food existed nearby, even without spatial information, led to faster maze solving compared to a control group that was not exposed to the food prior to the experiment. Faster solving is probably achieved by a higher number of workers entering the maze, following the information that food is present nearby. In a second experiment, we allowed the ants to make successive searches in the maze, followed by removing them after they had returned to the nest and interacted with their naïve nestmates. This procedure led to a maze-solving time in-between that displayed when removing the workers immediately after they had reached the food and preventing their return to the colony, and that of no removal. The workers that interacted upon returning to the nest might have transferred to naïve workers information, unrelated to spatial learning, that food existed nearby, and driven them to commence searching. Spatial learning, or an increase in the correct movements leading to the food reward relative to those leading to dead-ends, was only evident when the same workers were allowed to search again in the same maze. However, both non-spatial information on the presence of food that elevated search intensity and spatial learning led to faster maze solving.


Asunto(s)
Hormigas/fisiología , Alimentos , Aprendizaje por Laberinto , Animales , Recompensa , Aprendizaje Espacial
3.
Behav Processes ; 166: 103893, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31252072

RESUMEN

One neglected aspect of research on foraging behavior is that of the effect of obstacles that increase habitat complexity on foraging efficiency. Here, we explored how long it takes individually foraging desert ant workers (Cataglyphis niger) to reach a food reward in a maze, and examined whether maze complexity affects maze-solving time (the time elapsed till the first worker reached the food reward). The test mazes differed in their complexity level, or the relative number of correct paths leading to the food reward, vs. wrong paths leading to dead-ends. Maze-solving time steeply increased with maze complexity, but was unaffected by colony size, despite the positive correlation between colony size and the number of workers that searched for food. The number of workers observed feeding on the food reward 10 min after its discovery decreased with complexity level but not colony size. We compared our experimental results to three simulation models, applying different search methods, ranked them according to their fit to the data and found the self-avoiding random search to fit the best. We suggest possible reasons for the model deviations from the observational findings. Our data emphasize the necessity to refer to habitat complexity when studying foraging behavior.


Asunto(s)
Hormigas/fisiología , Conducta Exploratoria/fisiología , Aprendizaje por Laberinto/fisiología , Animales , Conducta Alimentaria/fisiología , Alimentos , Recompensa , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...